Abstract

Over the past few years, water quality monitoring has swiftly emerged as a thrust area for most of the developing nations. Despite its renewable essence, incessant industrialization and urbanization have depleted the natural water resources, culminating in adverse impact on potable water quality. As a consequence, reliable technologies with utmost sensitivity and accurate predictions vis-à-vis authentic qualitative standards are urgently needed. Herein, interest in using gold nanoparticles (Au NPs) biosensors to gauge the qualitative profile of water resources has been quite significant. Major fascinations for Au NPs biosensing driven water quality monitoring are steadfast preparation methodologies, well-understood mechanisms for size-shape modulation and inert sensitivity manifested remarkable functionalization abilities. The size-shape modulated functionalization advances for Au NPs are the dynamic outcomes of their quantum effects, anchored via single or multidimensional quantum confinements (QCs). Morphologies as vibrant as rod, spherical, cylindrical, shells and combinatorial regime have been the backbone aspects of Au NPs based biosensors. With such insights, the present article focuses on last decade noted advances aimed at Au NPs biosensors assessed water quality. The studies discussed herewith were retrieved from Pubmed using the keywords, “Gold Nanoparticle Biosensors for Water Quality Monitoring”. The knowledge shared herein could consolidate the fabrication of future Au nanomaterials based sensing technologies vis-à-vis functionalization mechanisms, cost considerations, precision aspects, integrated possibilities and long-term cautions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call