Abstract
The present work proposes a novel, compact, intuitively simple and efficient structure to improve the sensitivity of a microelectromechanical system (MEMS) capacitive accelerometer using an arrangement of microlever as a displacement amplifier. The accelerometer is proposed to serve as a microphone in the fully implantable cochlear prosthetic system which can be surgically implanted at the middle ear bone structure. Therefore, the design parameters such as size, weight and resonant frequency require deliberation. The paper presents a novel analytical model considering the impact of the mechanical amplification along with the width of the microlever and the capacitive fringe effects on the performance of the sensor. The design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The accelerometer is designed within a sensing area of 1mm2 and accomplishes a nominal capacitance of 4.85pF and an excellent sensitivity of 5.91fF/g.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.