Abstract

An anastomosing river is a stable multiple-channel system separated by inter-channel wetlands, and there are serious difficulties in observing the hydrodynamics of such river patterns in situ. Therefore, there are few reports on the hydrodynamic data of such rivers, for example, the upper Columbia and Pearl Rivers. In order to obtain the hydrodynamic parameter values at flow cross-sections of anastomosing rivers, without having to observe hydraulic radius, this study proposes a method called the Expression of Channel Morphological Parameters (ECMP) for hydrodynamic estimation. The calculation formula of the ECMP method is based on the shape factor (width–depth ratio), scale factor (mean depth), and gradient factor of the channel cross-sections of anastomosing rivers below a given water level as independent variables. This method can be used to calculate the mean velocity, discharge, specific stream power, and gross stream power of the flow cross-section at different water levels, only requiring the measurements of channel morphological parameters such as the mean depth, width–depth ratio, and gradient at the channel cross-section below the corresponding water level. The applicability of the ECMP method was verified using measured hydrological data. The results showed that the ECMP method is a practical estimation method with higher accuracy that is convenient for calculating the hydrodynamic parameters of anastomosing rivers. It can also be used to reconstruct ancient anastomosing rivers using the channel morphological parameters revealed from the fill sediments in ancient channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.