Abstract

A numerical method is presented for mesh-free calculation of moving interface problems in two-phase flow. In this method, the moving particle semi-implicit (MPS) method is combined with the meshless advection using flow-directional local-grid (MAFL) method, for an arbitrary Lagrangian-Eulerian calculation. Moving interfaces are directly traced in Lagrangian coordinates, while fixed boundaries such as inlet and outlet flows are calculated in Eulerian coordinates. The phase interface in two-phase flow is clearly calculated by tracing the computing points on the bubble surface. A calculation model for surface tension force is presented using the curvature of radius. The volume decrease in a gas bubble due to surface tension force is successfully computed. A kernel function with a variable kernel size is introduced to allow local concentration of computing points. A two-dimensional heat diffusion problem is solved using the variable kernel size model, and the result agrees with the exact solution. The void generation process in superheated liquid is simulated using the present method. The calculated bubble growth rate exactly coincides with the analytical solution. Rising bubble shapes in viscous liquid are also simulated in two dimensions, and the estimated shapes show good agreement with those of experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.