Abstract

This paper describes the design and fabrication of a MEMS guide plate, which was used for a vertical probe card to test a wafer level packaged die wafer. The size of the fabricated MEMS guide plate was 10.6 × 10.6 cm. The MEMS guide plate consisted of 8,192 holes to insert pogo pins, and four holes for bolting between the guide plate and the housing. To insert pogo pins easily, an inclined plane was defined at the back of each hole. Pitch and diameter of the hole were 650 and 260 µm, respectively. In order to define inserting holes and inclined planes at an exact position, silicon MEMS technology was used such as anisotropic etching, deep reactive etching and more. Silicon was used as the material of the guide plate to reduce alignment mismatch between the pogo pins and solder bumps during a high temperature testing. A combined probe card with the fabricated MEMS guide plate showed good x–y alignment and planarity errors within ±9 and ±10 μm at room temperature, respectively. In addition, x–y alignment and planarity are ±20 and ±16 μm at 125°C, respectively. The proposed MEMS guide plate can be applied to a vertical probe card for burn-in testing of a wafer level packaged die wafer because the thermal expansion coefficient of the MEMS guide plate and die wafer is same.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call