Abstract

The trapping of a phosphinidene (R-P) in an NCN pincer is presented. Stabilized phosphinidene 1 was characterized by 31 P{1 H}, 1 H, and 13 C{1 H} NMR spectroscopy, exhibiting an averaged C2v symmetry in solution between -60 and 60 °C. In the solid state, the phosphinidene is coordinated by one adjacent N atom featuring a formal P-N bond (1.757(2) Å) to give a five-membered ring with some aromatic character, confirmed by DFT calculations (B3LYP-D3/6-311G**++) to be the ground-state structure. Equilibration of the two N ligands occurs rapidly in solution via a "bell-clapper"-type process through an associative symmetric transition state calculated to lie 4.0 kcal mol-1 above the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.