Abstract

The diarylamido/bis(phosphine) PNP pincer ligand (2-(i)Pr(2)P-4-MeC(6)H(3))(2)N has been evaluated as a scaffold for supporting a BF(2) fragment. Compound (PNP)BF(2) (6) was prepared by simple metathesis of (PNP)Li (5) with Me(2)SBF(3). NMR spectra of 6 in solution are of apparent C(2) symmetry, suggestive of a symmetric environment about boron. However, a combination of X-ray structural studies, low-temperature NMR investigations, and DFT calculations consistently establish that the ground state of this molecule contains a classical four-coordinate boron with a PNBF(2) coordination environment, with one phosphine donor in PNP remaining "free". Fortuitous formation of a single crystal of (PNP)BF(2)·HBF(4) (7), in which the "free" phosphine is protonated, furnished another structure containing the same PNBF(2) environment about boron for comparison and the two PNBF(2) environments in 6 and 7 are virtually identical. DFT studies on several other diarylamido/bis(phosphine) pincer (PNP)BF(2) systems were carried out and all displayed a similar four coordinate PNBF(2) environment in the ground state structures. The symmetric appearance of the room-temperature NMR spectra is explained by the rapid interconversion between two degenerate four-coordinate, C(1)-symmetric ground-state forms. Lineshape analysis of the (1)H and (19)F NMR spectra over a temperature range of 180-243 K yielded the activation parameters ΔH(‡) = 8.1(3) kcal mol(-1) and ΔS(‡) = -6.0(15) eu, which are broadly consistent with the calculated values. Calculations indicate that the exchange of phosphine donors at the boron center proceeds by an intrinsically dissociative mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.