Abstract

Recent advances in Critical Congenital Heart Disease (CCHD) research using Photoplethysmography (PPG) signals have yielded an Internet of Things (IoT) based enhanced screening method that performs CCHD detection comparable to SpO2 screening. The use of PPG signals, however, poses a challenge due to its measurements being prone to artifacts. To comprehensively study the most effective way to remove the artifact segments from PPG waveforms, we performed feature engineering and investigated both Machine Learning (ML) and rule based algorithms to identify the optimal method of artifact detection. Our proposed artifact detection system utilizes a 3-stage ML model that incorporates both Gradient Boosting (GB) and Random Forest (RF). The proposed system achieved 84.01% of Intersection over Union (IoU), which is competitive to state-of-the-art artifact detection methods tested on higher resolution PPG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.