Abstract
Historical studies of labor markets frequently lack data on individual income. The occupational income score (OCCSCORE) is often used as an alternative measure of labor market outcomes. We consider the consequences of using OCCSCORE when researchers are interested in earnings regressions. We estimate race and gender earnings gaps in modern decennial Censuses as well as the 1915 Iowa State Census. Using OCCSCORE biases results towards zero and can result in estimated gaps of the wrong sign. We use a machine learning approach to construct a new adjusted score based on industry, occupation, and demographics. The new income score provides estimates closer to earnings regressions. Lastly, we consider the consequences for estimates of intergenerational mobility elasticities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.