Abstract
Efficacy of magnetic stimulation of the central or peripheral nervous system depends on the spatial and temporal distribution of the induced electric field generated by the magnetic coil. Therefore, accurate estimation of the induced electric field is crucial to the design and optimization of magnetic coils, particularly as the coil dimensions are reduced. In this work, we developed a numerical model of a multifascicular sciatic nerve to study the effect of tissue heterogeneity on the induced electric field. Using a multi-resolution electric field solver, we can resolve feature sizes as small as 1μm, allowing inclusion of the nerve membrane and the myelination layer. Preliminary results indicate that fascicle distribution and axons' proximity to each other significantly affect the magnitude and distribution of the induced electric field as compared to traditional homogeneous tissue models for field simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.