Abstract

AbstractFlow batteries (FBs) are one of the most promising stationary energy‐storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc–iron FB with very low cost and high energy density is presented. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh L−1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm−2 and the battery can run stably for more than 100 cycles. Furthermore, a low‐cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc–iron FB is a promising candidate for stationary energy‐storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call