Abstract

AbstractSolvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to −27 kJ mol−1 in the gas phase, but it was weakly disfavoured in our solution‐phase experiments (+0.5 to +4.6 kJ mol−1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies per unit change in solvent accessible area ranged from −0.02 kJ mol−1 Å−2 in CS2, to −0.05 kJ mol−1 Å−2 in CD2Cl2, but were dwarfed by the calculated gas‐phase energy of −0.6 kJ mol−1 Å−2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.