Abstract

The design of a 1.8 GHz 3-stage current-starved ring oscillator with a process- and temperature- compensated current source is presented. Without post-fabrication calibration or off-chip components, the proposed low variation circuit is able to achieve a 65.1% reduction in the normalized standard deviation of its center frequency at room temperature and 85 ppm/ <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C temperature stability with no penalty in the oscillation frequency, the phase noise or the start-up time. Analysis on the impact of transistor scaling indicates that the same circuit topology can be applied to improve variability as feature size scales beyond the current deep submicron technology. Measurements taken on 167 test chips from two different lots fabricated in a standard 90 nm CMOS process show a 3x improvement in frequency variation compared to the baseline case of a conventional current-starved ring oscillator. The power and area for the proposed circuitry is 87 μW and 0.013 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> compared to 54 μ W and 0.01 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> in the baseline case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.