Abstract
This study developed a low-cost paper-based biosensor for point-of-care (POC) detection of blood creatinine by using differential optical signal readout. Dual-channel photochemical paper-based test strips were fabricated with stackable multilayer films containing pre-immobilized enzymes and reagents for the identification and conversion of creatinine and creatine. Enzyme-linked reactions generated hydrogen peroxide (H2O2), which formed a blue oxidized condensate with aniline derivatives. The color depth was quantified via the differential optical signal of the two channels and positively correlated with the concentration of the analyte. This method was first proposed to address the issue of endogenous interferences in the enzymatic assay of creatinine, greatly improving the detection accuracy. The proposed biosensor was calibrated with spiked blood samples, and achieved a wide detection range of 31-1483 μmol/L, showing superior detection performance to general enzymatic methods, especially in the low concentration range. Creatine interference testing demonstrated that the biosensor could resist the interference of ≤ 300 μmol/L endogenous creatine. It is believed that the proposed optical differential biosensor for blood creatinine could enable to pave the way for a daily monitoring system for renal diseases.Clinical Relevance- This stackable multilayer paper-based biosensor provides an enzymatic colorimetric assay of creatinine in whole blood, which can be read out by the differential optical signal to exclude interference from endogenous creatine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.