Abstract
Unmanned aerial vehicles (UAVs) are increasingly being employed in search operations. Deep reinforcement learning (DRL), owing to its robust self-learning and adaptive capabilities, has been extensively applied to drone search tasks. However, traditional DRL approaches often suffer from long training times, especially in long-term search missions for UAVs, where the interaction cycles between the agent and the environment are extended. This paper addresses this critical issue by introducing a novel method—temporally asynchronous grouped environment reinforcement learning (TAGRL). Our key innovation lies in recognizing that as the number of training environments increases, agents can learn knowledge from discontinuous trajectories. This insight leads to the design of grouped environments, allowing agents to explore only a limited number of steps within each interaction cycle rather than completing full sequences. Consequently, TAGRL demonstrates faster learning speeds and lower memory consumption compared to existing parallel environment learning methods. The results indicate that this framework enhances the efficiency of UAV search tasks, paving the way for more scalable and effective applications of RL in complex scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.