Abstract

Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is crucial for reducing battery usage risks and ensuring the safe operation of systems. Addressing the impact of noise and capacity regeneration-induced nonlinear features on RUL prediction accuracy, this paper proposes a predictive model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) data preprocessing and IHSSA-LSTM-TCN. Firstly, CEEMDAN is used to decompose lithium-ion battery capacity data into high-frequency and low-frequency components. Subsequently, for the high-frequency component, a Temporal Convolutional Network (TCN) prediction model is employed. For the low-frequency component, an Improved Sparrow Search Algorithm (IHSSA) is utilized, which incorporates iterative chaotic mapping and a variable spiral coefficient to optimize the hyperparameters of Long Short-Term Memory (LSTM). The IHSSA-LSTM prediction model is obtained and used for prediction. Finally, the predicted values of the sub-models are combined to obtain the final RUL result. The proposed model is validated using the publicly available NASA dataset and CALCE dataset. The results demonstrate that this model outperforms other models, indicating good predictive performance and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call