Abstract
The link invariant, arising from the cyclic quantum dilogarithm via the particular R- matrix construction is proved to coincide with the invariant of triangulated links in S3 introduced in Ref. 14. The obtained invariant, like Alexander-Conway polynomial, vanishes on disjoint union of links. The R-matrix can be considered as the cyclic analog of the universal R-matrix associated with Uq(sl(2)) algebra.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have