Abstract
Let L = ℓ1 ∪⋯∪ℓd+1 be an oriented link in 𝕊3, and let L(q) be the d-component link ℓ1 ∪⋯∪ℓd regarded in the homology 3-sphere that results from performing 1/q-surgery on ℓd+1. Results about the Alexander polynomial and twisted Alexander polynomials of L(q) corresponding to finite-image representations are obtained. The behavior of the invariants as q increases without bound is described.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have