Abstract

A false key-based advanced encryption standard (AES) technique is proposed to prevent the stored secret key leaking from the substitution-box under correlation power analysis (CPA) attacks without significant power and area overhead. Wave dynamic differential logic (WDDL)-based XOR gates are utilized during the reconstruction stage to hide the intermediate data that may be highly correlated with the false key. After applying the false key and designing the reconstruction stage with the WDDL, the minimum measurement-to-disclose value for the proposed lightweight masked AES engine implementation becomes over 150 million against CPA attacks. As compared to an unprotected AES engine, the power, area, and performance overhead of the proposed AES implementation is negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call