Abstract

Three-dimensional (3D) integration is envisioned as a natural defense to thwart side-channel analysis (SCA) attacks on the hardware implementation of cryptographic algorithms. However, neither physical experiments nor quantitative analysis is available in existing works to study the impact of power distribution network (PDN) on the SCA attacks. Through quantitative analyses and experiments with realistic 3D models, this work demonstrates the impact of noise in PDN on the 3D chip's resilience against correlation power analysis (CPA) attack, which is one of SCA attacks. The characteristic of PDN noise is extracted from our experiments. To expand the natural defense originated from the 3D integration, this work proposes to exploit the PDN noise inherently existing in 3D chips to thwart CPA attacks. Instead of introducing external noise or flattening the power profile, the proposed method utilizes the spatially and temporally varied supply voltages from other 3D planes to blur the power correlation of the crypto unit. Both theoretical analysis and experimental validation prove that the proposed method can effectively enhance the resilience of a crypto unit embedded in the 3D chip against CPA attacks. Simulation results show the proposed method improves the average guessing entropy by 9× over the baseline. Emulation on an FPGA platform demonstrates that the proposed method successfully slows down the key retrieval speed of CPA attack, with significantly less power overhead than representable power equalization techniques. Test vector leakage assessment (TVLA) shows that the proposed method improves the confidence to accept null hypothesis 201× over the baseline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call