Abstract

A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG.The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.