Abstract

The detection of coronavirus disease (COVID-19) using standard laboratory tests, such as reverse transcription polymerase chain reaction (RT-PCR), is time-consuming. Complex medical imaging problems are currently being solved using machine learning and deep learning techniques. Our proposed solution utilizes chest radiography imaging techniques, which have shown to be a faster alternative for detecting COVID-19. We present an efficient and lightweight deep learning architecture for identifying COVID-19 using chest X-ray images which achieve 99.81% accuracy in intra-database testing and 100% accuracy in cross-validation testing on a separate data set. The results demonstrate the potential of our proposed model as a reliable tool for COVID-19 diagnosis using chest X-ray images, which can have a significant impact on improving the efficiency of COVID-19 diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.