Abstract
Pneumonia and tuberculosis are the major public health problems worldwide. These diseases affect the lungs, and if they are not diagnosed properly in time, they can become a fatal health problem. Chest x-ray images are widely used to detect and diagnose Pneumonia and Tuberculosis disease. Detection of Pneumonia and Tuberculosis from chest x-ray images is difficult and requires experience due to the similar pathological features of the diseases. Sometimes a misdiagnosis of the disease occurs due to this similarity. Several researchers used deep learning and machine learning techniques to solve this misdiagnosis problem. However, these studies used the chest x-ray images only to develop Pneumonia and Tuberculosis disease detection models. But using the chest x-ray images alone cannot necessarily lead to accurate disease detection and classification. In the traditional or manual approach, medical records are required to support and correctly interpret the chest x-ray images in the appropriate clinical context. This study develops a multi-input Pneumonia and Tuberculosis detection model using chest x-ray images and medical records to follow the clinical procedure. The study applied a Convolutional Neural Network for the chest x-ray image data and a Multilayer perceptron for the medical record data to develop the models. We implemented feature-level concatenation to join the output feature vectors from the Convolutional Neural Network and a Multilayer perceptron for the development of the disease detection model. For the purpose of comparison, we also developed image-only and medical record-only models. Consequently, the image-only model gives an accuracy of 92.68%, the medical record-only model results in 98.72% accuracy, and the combined model accuracy is improved to 99.61%. In general, the study shows that the fusion of the chest x-ray and the medical records leads to better accuracy and is more similar to the clinical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.