Abstract

Abstract We propose a least-squares method involving the recovery of the gradient and possibly the Hessian for elliptic equation in nondivergence form. As our approach is based on the Lax–Milgram theorem with the curl-free constraint built into the target (or cost) functional, the discrete spaces require no inf-sup stabilization. We show that standard conforming finite elements can be used yielding a priori and a posteriori convergence results. We illustrate our findings with numerical experiments with uniform or adaptive mesh refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.