Abstract

We consider viscosity solutions to nonlinear uniformly parabolic equations in nondivergence form on a Riemannian manifold M with the sectional curvature bounded from below by −κ for κ≥0. In the elliptic case, Wang and Zhang [24] recently extended the results of [5] to nonlinear elliptic equations in nondivergence form on such M, where they obtained the Harnack inequality for classical solutions. We establish the Harnack inequality for nonnegative viscosity solutions to nonlinear uniformly parabolic equations in nondivergence form on M. The Harnack inequality of nonnegative viscosity solutions to the elliptic equations is also proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.