Abstract
Cosmic radiation resulting in transient faults to the combinational logic of Integrated Circuits (ICs), constitutes a major reliability concern for space applications. In addition, continuous technology shrinking allows for the presence of Single-Event-Multiple-Transients (SEMTs), and renders modern chips more susceptible to soft errors. The study and evaluation of the impact of such errors on ICs functionality, as well as the pursuit of techniques to mitigate Soft Error Rate (SER), tend to become an essential part of the design process. This paper presents a Monte-Carlo-based SER estimation method, taking into account all masking mechanisms, which determines the vulnerable areas of a circuit based on layout information. Two layout-aware approaches are examined, the All-to-All and TMR-based, resulting in sufficient SER mitigation. The former, implies spacing among all components, while the latter converts the most sensitive components to a TMR structure, guaranteeing spacing between TMR triplet. The TMR-based approach leads to better SER mitigation compared to All-to-All, and produces better area and performance results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.