Abstract
ABSTRACTA numerical scheme for simulating multi-species shock accelerated flows using lattice Boltzmann approach has been proposed. It uses the moment conservation approach of Yang, Shu, and Wu and extends it to multi-species fluid problems. The multi-species method of Wang et al. has been modified by use of a predictor–corrector approach. This has helped in preventing the pressure oscillations while handling multi-species. Simulation of 2D shock cylinder interaction with this solver has shown good agreement with the experimental data and could capture material discontinuity and unsteady shocks. The simulation of a single mode Richtmyer–Meshkov instability showed that the solver is able to capture the development of spike and bubble as per the experimental findings of Aure and Jacobs. The dissipation in the proposed scheme was further reduced by the use of fifth-order weighted essentially non-oscillatory (WENO). Validated with multiple problems, this method has been found to capture shock instability with good accuracy with a check on pressure oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Fluid Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.