Abstract

This paper proposes a novel core-growing (CG) clustering method based on scoring k-nearest neighbors (CG-KNN). First, an initial core for each cluster is obtained, and then a tree-like structure is constructed by sequentially absorbing data points into the existing cores according to the KNN linkage score. The CG-KNN can deal with arbitrary cluster shapes via the KNN linkage strategy. On the other hand, it allows the membership of a previously assigned training pattern to be changed to a more suitable cluster. This is supposed to enhance the robustness. Experimental results on four UCI real data benchmarks and Leukemia data sets indicate that the proposed CG-KNN algorithm outperforms several popular clustering algorithms, such as Fuzzy C-means (FCM) (Xu and Wunsch IEEE Transactions on Neural Networks 16:645---678, 2005), Hierarchical Clustering (HC) (Xu and Wunsch IEEE Transactions on Neural Networks 16:645---678, 2005), Self-Organizing Maps (SOM) (Golub et al. Science 286:531---537, 1999; Tamayo et al. Proceedings of the National Academy of Science USA 96:2907, 1999), and Non-Euclidean Norm FCM (NEFCM) (Karayiannis and Randolph-Gips IEEE Transactions On Neural Networks 16, 2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.