Abstract
In this paper we present a comparison among some nonhierarchical and hierarchical clustering algorithms including SOM (Self-Organization Map) neural network and Fuzzy c-means methods. Data were simulated considering correlated and uncorrelated variables, nonoverlapping and overlapping clusters with and without outliers. A total of 2530 data sets were simulated. The results showed that Fuzzy c-means had a very good performance in all cases being very stable even in the presence of outliers and overlapping. All other clustering algorithms were very affected by the amount of overlapping and outliers. SOM neural network did not perform well in almost all cases being very affected by the number of variables and clusters. The traditional hierarchical clustering and K-means methods presented similar performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.