Abstract

A fault detection and diagnosis method for the hydraulic servo system based on adaptive threshold and self-organizing map (SOM) neural network is proposed in this study. The nonlinear, time-varying, fluid-solid coupling properties of the hydraulic servo system are considered. Fault detection is realized based on a two-stage radial basis function (RBF) neural network model. The first-stage RBF neural network is adopted as a fault observer for the hydraulic servo system; the residual error signal is generated by comparing the estimated observer output with the actual measurements. To overcome the drawback of false alarms when the traditional fixed fault threshold is used, an adaptive threshold producer is established by the second-stage RBF neural network. Fault occurrence is detected by comparing the residual error signal with the adaptive threshold. When a system fault is detected, the SOM neural network is employed to implement fault classification and isolation by analyzing the features of the residual error signal. Three types of common faults are simulated to verify the performance and effectiveness of the proposed method. Experimental results demonstrate that the proposed method based on adaptive threshold and SOM neural network is effective in detecting and isolating the failure of the hydraulic servo system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call