Abstract
Classical clustering methods, such as partitioning and hierarchical clustering algorithms, often fail to deliver satisfactory results, given clusters of arbitrary shapes. Motivated by a clustering validity index based on inter-cluster and intra-cluster density, we propose that the clustering validity index be used not only globally to find optimal partitions of input data, but also locally to determine which two neighboring clusters are to be merged in a hierarchical clustering of Self-Organizing Map (SOM). A new two-level SOM-based clustering algorithm using the clustering validity index is also proposed. Experimental results on synthetic and real data sets demonstrate that the proposed clustering algorithm is able to cluster data in a better way than classical clustering algorithms on an SOM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.