Abstract
The reaction of benzoborirene with one equivalent of isocyanides leads to benzene-fused boretes bearing one imine function, while the reaction with two equivalents of isocyanide affords 2,3-dihydro-2,3-diiminoboroles with perfect regioselectivity. The isocyanide double insertion products represent a novel type of 1,2-diimine with a benzoborole backbone. The reduction chemistry of the benzoborole-supported 1,2-diimine was investigated. Single- and two-electron reduction allow for the isolation and full characterization of a radical anion and a dianion, respectively. In stark contrast to the ordinary boroles, which should turn aromatic by accepting two electrons, the antiaromatic character of the benzoborole backbone is highlighted upon reduction, thus presenting a rare example of antiaromatic borole dianion. Detailed quantum chemical calculations provide a rationale for the observed regioselectivity and the electronic structure of the reduced borole diimine species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.