Abstract
Dehydrogenation of 10-methyl-9,10-dihydroacridine (AcrH(2)) by dioxygen (O(2)) proceeds efficiently, accompanied by the two-electron and four-electron reduction of O(2) to produce H(2)O(2) and H(2)O, which are effectively catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins in the presence of perchloric acid (HClO(4)) in acetonitrile (MeCN) and benzonitrile (PhCN), respectively. The cobalt porphyrin catalyzed two-electron reduction of O(2) also occurs efficiently by 9-alkyl-10-methyl-9,10-dihydroacridines (AcrHR; R = Me, Et, and CH(2)COOEt) to yield 9-alkyl-10-methylacridinium ion (AcrR+) and H(2)O(2). In the case of R = Bu(t) and CMe(2)COOMe, however, the catalytic two-electron and four-electron reduction of O(2) by AcrHR results in oxygenation of the alkyl group of AcrHR rather than dehydrogenation to yield 10-methylacridinium ion (AcrH+) and the oxygenated products of the alkyl groups, i.e., the corresponding hydroperoxides (ROOH) and the alcohol (ROH), respectively. The catalytic mechanisms of the dehydrogenation vs the oxygenation of AcrHR in the two-electron and four-electron reduction of O(2), catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins, respectively, are discussed in relation to the C(9)-H or C(9)-C bond cleavage of AcrHR radical cations produced in the electron-transfer oxidation of AcrHR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.