Abstract

Joint encryption-encoding schemes have been released to fulfill both reliability and security desires in a single step. Using Low Density Parity Check (LDPC) codes in joint encryption-encoding schemes, as an alternative to classical linear codes, would shorten the key size as well as improving error correction capability. In this article, we present a joint encryption-encoding scheme using Quasi Cyclic-Low Density Parity Check (QC-LDPC) codes based on finite geometry. We observed that our proposed scheme not only outperforms its predecessors in key size and transmission rate, but also remains secure against all known cryptanalyses of code-based secret key cryptosystems. We subsequently show that our scheme benefits from low computational complexity. In our proposed joint encryption-encoding scheme, by taking the advantage of QC-LDPC codes based on finite geometries, the key size decreases to 1/5 of that of the so far best similar system. In addition, using our proposed scheme a wide range of desirable transmission rates are achievable. This variety of codes makes our cryptosystem suitable for a number of different communication and cryptographic standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.