Abstract

Quasi-cyclic (QC) low-density parity-check (LDPC) codes have the parity-check matrices consisting of circulant matrices. Since QC LDPC codes whose parity-check matrices consist of only circulant permutation matrices are difficult to support layered decoding and, at the same time, have a good degree distribution with respect to error correcting performance, adopting multi-weight circulant matrices to parity-check matrices is useful but it has not been much researched. In this paper, we propose a new code structure for QC LDPC codes with multi-weight circulant matrices by introducing overlapping matrices. This structure enables a system to operate on dual mode in an efficient manner, that is, a standard QC LDPC code is used when the channel is relatively good and an enhanced QC LDPC code adopting an overlapping matrix is used otherwise. We also propose a new dual mode parallel decoder which supports the layered decoding both for the standard QC LDPC codes and the enhanced QC LDPC codes. Simulation results show that QC LDPC codes with the proposed structure have considerably improved error correcting performance and decoding throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call