Abstract

This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.