Abstract
In most TVD schemes, the r-factors were proposed according to the cell-centered (CC) finite volume method (FVM) framework for the numerical approximation to the convective term. However, it is questionable whether those r-factors would be appropriate and effective for the vertex-centered (VC) FVM. In the paper, we collected five kinds of r-factor formulae and found out that only three of those, respectively by Bruner (1996), Darwish and Moukalled (2003) and Cassuli and Zanolli (2005) can be formally extended to a context of the VC FVM. Numerical tests indicate that the TVD schemes and r-factors, after being extended and introduced to a context of the VC FVM, maintained their similar characteristics as in a context of the CC FVM. However, when the gradient-based r-factors and the SUPERBEE scheme were applied simultaneously, non-physical oscillations near the sharp step would appear. In the transient case, the oscillations were weaker in a context of the VC FVM than those in a context of the CC FVM, while the effect was reversed in the steady case. To eliminate disadvantages in the gradient-based r-factor formula, a new modification method by limiting values on the virtual node, namely ϕU in the paper, was validated by the tests to effectively dissipate spurious oscillations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.