Abstract

Remaining useful life (RUL) prediction is crucial to supporting intelligent maintenance and health management of safety–critical products. Although advanced data-driven approaches such as deep neural networks are effective in processing high-dimensional non-linear health features, their application to field RUL prediction confronts with two challenges: (a) adaptivity of the lifetime parameter learning process is often restricted, and (b) prediction of multi-source uncertainties is almost analytically intractable. This paper addresses such challenges by devising a tractable, global adaptive model-data-interaction prognostic framework, where a non-linear stochastic degradation model governed by self-adaptive trajectory pattern is constructed to transfer historical health knowledge. In particular, a joint parameter learning framework is established under the structure of a multi-branch Bayesian network, such that to simultaneously learn: (a) degradation model parameters, and (b) network hyper-parameters. Additionally, the key control parameters of the degradation process are updated adaptively leveraging multi-dimensional sequential Bayesian learning. An efficient interpolation algorithm is further proposed to alleviate computation burden of RUL distributions. Case studies conducted on both turbofan engines degradation data and field train bearing vibration data demonstrate the superior model performance compared to existing methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.