Abstract

Abstract A crystal oscillator is a typical frequency generating unit that is widely used in computers, neural chips, biosensors and other applications; thus, it is very important to estimate and predict its remaining useful life (RUL) precisely. However, there are few existing RUL prediction methods because the observed data involve various uncertainties, leading to the great limitation of RUL prediction in practical application. In this work, we propose an uncertainty RUL prediction method based on the exponential stochastic degradation model that considers the multiple uncertainty sources of oscillator stochastic degradation processes simultaneously. Next, based on Bayesian theory, a novel Bayesian-Extreme Learning Machine parameter-updating algorithm that combines the local and global similarity methods is presented and used to eliminate the effects of multiple uncertainty sources and predict the RUL accurately. The effectiveness of the method is demonstrated using the accelerated degradation tests of crystal oscillators. Through comparisons with the predicted results without uncertainty, the proposed method demonstrates its superiority in describing the stochastic degradation processes and predicting the oscillator's RUL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.