Abstract
This paper presents a hybrid neuro-fuzzy methodology to identify appropriate global logistics (GL) operational modes used for global supply chain management. The proposed methodological framework includes three main developmental phases: (1) establishment of a GL strategic hierarchy, (2) formulation of GL-mode identification rules, and (3) development of a GL-mode choice model. By integrating advanced multi-criteria decision-making (MCDM) techniques including fuzzy analytical hierarchy process (Fuzzy-AHP), Fuzzy-MCDM, and the technique for order preference by similarity to an ideal solution (TOPSIS), six types of global logistics and operational modes coupled with corresponding fuzzy-based multi-criteria decision-making rules are specified in the second phase. Using the specified fuzzy decision-making rules as the input database, an adaptive neuro-fuzzy inference system (ANFIS) is then developed in the third phase to identify proper GL modes for the implementation of global supply chain management. A numerical study with a questionnaire survey database aimed at the information technology (IT) industries of Taiwan is conducted to illustrate the applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.