Abstract
The proton exchange membrane fuel cell (PEMFC) is a promising power source, but the short lifespan and high maintenance cost restrict its development and widespread application. Performance degradation prediction is an effective technique to extend the lifespan and reduce the maintenance cost of PEMFC. This paper proposed a novel hybrid method for the performance degradation prediction of PEMFC. Firstly, considering the randomness of PEMFC degradation, a Wiener process model is established to describe the degradation of the aging factor. Secondly, the unscented Kalman filter algorithm is used to estimate the degradation state of the aging factor from monitoring voltage. Then, in order to predict the degradation state of PEMFC, the transformer structure is used to capture the data characteristics and fluctuations of the aging factor. To quantify the uncertainty of the predicted results, we also add the Monte Carlo dropout technology to the transformer to obtain the confidence interval of the predicted result. Finally, the effectiveness and superiority of the proposed method are verified on the experimental datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.