Abstract

In this paper, a dynamic prediction scheme that combines the data assimilation method and dynamic mode decomposition (DMD) is brought out for the prediction of the whole-core power distribution under xenon oscillations within the HRP1000 reactor. The DMD is used to predict the power values over the nodes where in-core detectors exist, and predicted power is then extended to the whole core using data assimilation methodologies, e.g. the inverse distance–based data assimilation method. In the data assimilation stage, the selection of the background physical field and the regularization factor under different noise levels is investigated. A series of numerical experiments, based on the HPR1000 proof of feasibility of the coupling scheme, is conducted under low noise levels or low prediction step sizes. Finally, the optimal application conditions and the prediction performance of the coupling scheme in different noise levels are analyzed for practical engineering usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.