Abstract

Currently, there is no unified criterion to evaluate the failure of single-layer latticed domes, and an accurate nonlinear time-history analysis (NTHA) is generally required; however, this does not consider the uncertainties found in practice. The seismic instability of domes subjected to earthquake ground motions has not been thoroughly investigated. In this paper, a new approach is developed to automatically capture the instability points in the incremental dynamic analysis (IDA) of single-layer lattice domes by integrating different efficient and robust methods. First, a seismic fragility analysis with instability parameters is performed using the bootstrap calibration method for the perfect dome. Second, based on the Sobol sequence, the quasi-Monte Carlo (QMC) sampling method is used to efficiently calculate the failure probability of the dome with uncertain parameters, in which the truncated distributions of random parameters are considered. Third, the maximum entropy principle (MEP) method is used to improve the computational efficiency in the analyses of structures with uncertainties. Last, the uncertain interval of the domes is determined based on the IDA method. The proposed method has been used to investigate the instability of single-layer lattice domes with uncertain parameters. The results show that it can determine the probability of structural failure with high efficiency and reliability. Additionally, the limitations of the proposed method for parallel computation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.