Abstract

We investigate the transition between oscillatory and steady convection at onset in low Prandtl number rotating convection in a plane layer. This transition is dominated by mode interactions which, at one point in parameter space, can be posed on a square lattice. This allows a rigorous reduction to a finite-dimensional bifurcation problem. We construct the normal form and compute the normal form coefficients for this codimension-2 bifurcation directly from the PDEs for Boussinesq rotating convection with stress-free upper and lower boundaries. The dynamics near the codimension-2 point are investigated fully; they explain behaviour found in numerical simulations of the PDEs at parameter values near the transition boundary. In particular, the normal form exhibits bursting dynamics created by a heteroclinic cycle containing points ‘at infinity’.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.