Abstract
SynopsisIn this paper we show that in O(2) symmetric systems, structurally stable, asymptoticallystable, heteroclinic cycles can be found which connect periodic solutions with steady states and periodic solutions with periodic solutions. These cycles are found in the third-order truncated normal forms of specific codimension two steady-state/Hopf and Hopf/Hopf mode interactions.We find these cycles using group-theoretic techniques; in particular, we look for certainpatterns in the lattice of isotropy subgroups. Once the pattern has been identified, the heteroclinic cycle can be constructed by decomposing the vector field on fixed-point subspaces into phase/amplitude equations (it is here that we use the assumption of normal form). The final proof of existence (and stability) relies on explicit calculations showing that certain eigenvalue restrictions can be satisfied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.