Abstract

A three-dimensional constitutive model for skeletal muscle incorporating microstructural characteristics is developed and numerically implemented in a general purpose finite element program. The proposed model takes into account explicitly the volume fractions of muscle fibers and connective tissue by using the Voigt homogenization approach to bridge the different length scales of the muscle structure. The model is used to estimate the active and passive homogenized muscle response. Next, the model is validated by experimental data and periodic three-dimensional unit cell calculations comprising various fiber volume fractions and mechanical properties of the constituents. The model is found to be in very good agreement with both the experimental data and the finite element results for all the examined cases. The influence of fiber volume fraction and material properties of constituents on effective muscle response under several loading conditions is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.