Abstract

Consider the scattering of a time-harmonic plane wave by a rigid obstacle embedded in a homogeneous and isotropic elastic medium in two dimensions. In this paper, a novel boundary integral formulation is proposed and its highly accurate numerical method is developed for the elastic obstacle scattering problem. More specifically, based on the Helmholtz decomposition, the model problem is reduced to a coupled boundary integral equation with singular kernels. A regularized system is constructed in order to handle the degenerated integral operators. The semi-discrete and full-discrete schemes are studied for the boundary integral system by using the trigonometric collocation method. Convergence is established for the numerical schemes in some appropriate Sobolev spaces. Numerical experiments are presented for both smooth and nonsmooth obstacles to demonstrate the superior performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.