Abstract

In this paper, we focus on constructing numerical schemes preserving the averaged energy evolution law for nonlinear stochastic wave equations driven by multiplicative noise. We first apply the compact finite difference method and the interior penalty discontinuous Galerkin finite element method to discretize space variable and present two semi-discrete schemes, respectively. Then we make use of the discrete gradient method and the Padé approximation to propose efficient fully-discrete schemes. These semi-discrete and fully-discrete schemes are proved to preserve the discrete averaged energy evolution law. In particular, we also prove that the proposed fully-discrete schemes exactly inherit the energy evolution law almost surely if the considered model is driven by additive noise. Numerical experiments are given to confirm theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.