Abstract

A quartz resonant pressure sensor is proposed for high-precision measurement of ultra-high pressure. The resonant unit realizes a push-pull differential layout, which restrains the common-mode interference factor, and the resonator is only subject to axial force. The pressure conversion unit is made in an integrated manner, avoiding output drift problems caused by residual stress and small gaps during assembly, welding, and other processes in sensor preparation. Theoretical and simulation analysis was conducted on the overall design scheme of the sensor in this paper, verifying the feasibility. Sensor prototypes were created and performance experiments were conducted. The experimental results show that the sensitivity of the ultra-high pressure sensor is 46.32 Hz/MPa at room temperature within the pressure range of 120 MPa, and the comprehensive accuracy is 0.0266%. The comprehensive accuracy of the sensor is better than 0.0288% FS in the full temperature range environment. This proves that the sensor scheme is suitable for high-precision and high-stability detection of ultra-high pressure, providing new solutions in special pressure measurement fields such as deep-sea and oil exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.