Abstract

This paper presents a high level power estimation methodology for a Network-on-Chip (NoC) router, that is capable of providing cycle accurate power profile to enable power exploration at system level. Our power macro model is based on the number of flits passing through a router as the unit of abstraction. Experimental results show that our power macro model incurs less than 5% average absolute cycle error compared to gate level analysis. The high level power macro model allows network power to be readily incorporated into simulation infrastructures, providing a fast and cycle accurate power profile, to enable power optimization such as power-aware compiler, core mapping, and scheduling techniques for CMP. As a case study, we demonstrate the use of our model for evaluating the effect of different core mappings using SPLASH-2 benchmark showing the utility of our power macro model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.